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A Contribution to the Theory of Polarization of Porous Electrodes

Karel Micka

~ Polarographic Inétitute, Czechoslovak Academy of Science, Prague

Introduction .

The problem of polarization of porous electfodgs with relation
to the resistance of the electrode material was solved first by Cole-
man (1) in the case o° cylindrical cathodes of Leclanché elements, ‘In
his differential equation, a supposition is implicitly included that
the faradayic current, u, is directly propbrtional to the polarization
of manganese dioxide particles, although he considered the "electromo-
tive forece of the manganese dioxide particle" as constant. Therefore,
Coleman ‘s expfeésion for the faradayic current as a function of the

- distance from electrode surface is substantially in accord with that

of Buler snd Nonnenmacher (2) who assumed a linear polarization curve
of manganese dioxide electrode. Daniel-Bek (3) was the first to deduce
fundamental differential equations in the form which is used nowadays.
He‘gave the solution for two limiting cases, viz., that the faradayic’
current is en exponential or a linear function of polarization. Final-
ly, Newman end Tobias (4) solved the differential equations under the
supposition that the faradayid current is an exponential function of
polarization and their results are substantially in accord with those
of Daniel-Bek, ' _

None of the mentioned authors’ solutions is vglid for the whole -
polarization region, but only for 1limiting cases of either small or
large overvoltage., However, it is possible to deduce a generally vaglid’

.solution, a8 follows.

Mathematicalisolution

For exactness, let us consider an electrode of rectangular shape
with pores in form of linesr channels parallel to one .edge of the ele-

ctrode, although it is possible to abandon any assumption concerning




_126

the geometry of the pores (4). The x-axis runs parallel to the pores,
on the electrolyte side being x = O. A metallic conductor as current
collector is placed on the end of the pores, gt x = L. For potential,
¢,, in the electrode material, Ohm’s law holds:

d . : ,
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where , is the resistance of a cubic centimeter of the porous elec-
trode material in the direction of x-axis, and i, is the electronic
current density corresponding to 1 .sq. cm. of the electrode section
perpendicular to the x-axis. .

When the electrode consists of a depolarizer and an excess sup-
porting electrolyte, and when the concentration polarization can be
neglected with respect to the activation and resistance polarization,
then an analogous equation holds fo: the potential, Pos in the elect-
rolyte:

N dee

dx = =Pty . 72/
. where @, is the resistance of the electrolyte contained in one cubic
centimeter of the electrode, and i, is the ionic current density cor-
responding again to 1 sq. cm. of the electrode section. Finally, ac-
cording to Dahiel-Bek {3), we may write the following equation for the
density of faradayic current, D, on the imner pore surface:
%:—SD, o /3/
where 3 1s e inner surface of a cubic cen
Let us choose for D the following function o
ge/, I

.
-
polarization /overvolta-

)

D = 2i sinh (3E, ' /4/

where B = ¢, -9, fulfills the condition that E = O when D = 0, i, is
the exchange current density, and (3 = F/2RT; it is possible, however,
to substitute for 3 an empirical value obtained by measurement of po-
larization curves witli a planar electrode. For anodic asnd cathodic po-
larization, the values of ( can be difterent. Therefore, it would be
more correct to use the well known general relation between current and
overvoltage from the theory of absolute reaction rates, rather than e-
quation /4/. In that éase, however, the matheanatical solution would be-
come too complicated, without yielding any substantial improvement.

The boundary conditions for equations /1/-/3/ are:

x=0: i, =0, p, =0, /5/
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x=L: i, =1,

and the conservation law of current:

For a cathodic current, I >0, E >0, and D > 03 for an anodic current,

/1

I<0, E <0, and D < 0. The problem defined by equations /1/-/7/ can

be reduced to the following differential equation:

)L d)‘(t = S‘Vv\}\.m
with boundary conditions: A
daw  _
x=0: gx = "(3?11_:

X L: g'&':(}ﬂl

with u = GE, and A = {/V2(S5B(p,+ F,)

The solution of equatlons /8/-/10/ is:
b x~x \ WINAV'S \y)

‘where Flk,vy) stands for .the elliptic integral of the first

the modulus

1
x = J
cosh {u,
and amplitude
sinh +u
Y = arceos———=—1 |
sinh tu

Y

/9/

710/

/11/
kind with

/12/

/13/

Further x, is the value of x at which {ul has the minimum value fugle.
Formally, the solution /11/ is analogous to that which Winsel (5) de-

" rived for the case of P = 0.
The expression for faradaylc current takes the f‘orm

v .

a4 being defined by equation /11/ as

my = 9an§i§fA"*),

/14/

/15/

where sn denotes Jacobi’s elliptic function. Further D, stands for
2i, sinh u, , so that {D,.| represents the minimum value of \D\.
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An important measurable quantity is the potential, ¢, , of the
metallic conductor at the end of the pores /vs., the electrolyte poten-
tial at x = 0/. For this we obtain:

£
T e ——— + 1
fu == T, Bt TR -5l B s
where E, and E, are the values of E for x = 0 and x = L, which fulfill

the following relationship:

cosh3E, - cosh BE, = 13"X e -¢r). /17/
The valuye of E, can be computed from the equation
sinhi0E, 1 /18/
I sin vy,

where I = 2/(57\91, and Y, is the solution of the equation

= = Flkan) « F ko) - Ny

with v, = arctg[(¢/4,) tay,), and k = 1/V1 + I/Iltg"y, .
. Some limiting cases

When the pores are short so that L<-‘5_1v kA and the current is
- large, then k <« 1 and the expression for faradayic current becomes:

D = D_sect T _Tm /20/
In this case, the polarization of the elecirode is iarge, so that the
hyperbolic sine in equation /4/ may be substituted by an exponential
function. Equation /20/ can be shown to correspond exactly to the solu-
tion given by Newmen and Tobias (4).
When, on the contrary, the pores are long and the current small,
so that |I\<< I sinh(L/Zx) , equation /14/ becomes

-X
D D __cosh ____m Vk cosh —-7-\-'1-‘ . /2Y/

When, in addition, the polarization of the electrode is small, so that
fhe hyperbolic sine in equation /4/ mgy be substituted by a linear
function, we can set k = 1 in equation /21/ to obtain a simple formula
which /after suitable rearrangement/ can be shown to correspond exac-—
tly to the solution given by Euler and Nonnenmacher (2).

When the specific resistances of both phases, electrode and elec-
trolyte, are equal, then equation /17/ yields simply E, = E_, so that
the polarization at one end of the pores is equal to that at the other.
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Further x, = 1L, that is, the minimum of the absolute value of pola-
rizetion is in the middle of the electrode. Hence, the feradayic cur-
rent distribution in the electrode is symmetrical., Equation /16/ be-
comes

‘7”11.:"3 -—;:ILP, - /22/

°
When the specific resistance of the electrode is negligible, so
that /P — 0, we’ have the case allready discussed by Winsel (5);
then ¢, = -E,, x,= L. On the contrary, when. the specific re31stance
of the electrode is very great, so that @ /p, — oo, we have ¢, = —uL,

- X, = 0. The results of Winsel (5)'can be applied in this case, if we

introduce a new independent variable x'= L -~ x. In other words, we con-
sider the end of the pores as the beginning and vice versa.

An interesting and very simple case is when the specific resis-
tances of both phases are equal and, simultaneously, the pores are
long and/or the current is small. Then we can express yﬂ_ s1nply as
a function of the current, I:

I L ' :
P = = é- arsinh (; coth é—;) - 1—7_11.91 ) /23/

from which it can be seen that the electrode polarization, Py, is di-

rectly proportlonal to the total current when |I| << I,- Further, we
can deflne the initial polarization resistance as

' 2
R = _.‘_—a_‘ﬁ.':) T COth'——L- + %L?“ . /:4/
°l 1B 2

. The symmetrical form of faradgyic current distribution can be readily

seen from>equation /21/, if we set x, = L/2. .

Other cases gre more -complicated snd we have to compute the po-
larization curves, ¢, = f(I), numerically for a given set of parame-
ters I,, L,A, @, end P,. This will be the purpose of further work.
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